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In this paper, we analyse the algebraic structure of the equations for calculating 
the first order static properties using several approximate versions of Coupled 
Cluster (CC) methods. In particular, the non-variational and the variational 
method using a CC wavefunction corresponding to an appropriately defined 
perturbed Hamiltonian as well as the simple expectation value expression 
using a CC stationary state are studied under different approximations. Two 
different models are proposed: (a) use of maximum overlap orbitals where 
the pertinent approximations are T ~ T2, T (1) - T2 <1), (b) use of Hartree-Fock 
orbitals and T - ( T1 + T2), T (1) - ( T~ 1! + T(21)) approximations. It is analytically 
shown that in both these models certain approximate versions of the methods 
under purview yield identical results for first order static properties. 

Key words: Static properties - -  Coupled Cluster methods - -  Atoms and 
molecules 

1. Introduction 

The use of highly correlated methods like the Coupled Cluster Method (CCM) 
and Many Body Perturbation Theory (MBPT) has recently been made in the 
context of various static properties [1-6, 8, 9]. These methods have already been 
highly successful in the calculation of electron correlation energies. Hence recently 
it has been felt natural to study the use of  these methods to the static properties. 
MBPT framework was used suitably by Sadlej for the calculation of static 
properties [8]. (2f~ek and Fink considered the expectation value of  a property 
operator using a reference CC state. A CCM was advocated by Monkhorst [4] 
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using a suitable form of  the Coupled Cluster (CC) wave function. The method 
was nonvariational in nature. Taking cue from the ansatz proposed by Monkhorst, 
a variational CCM and a method using a unitary CC wave function were recently 
suggested by us [5, 6]. A CCM using bivariational expression has recently been 
advocated by Arponen [1]. Kiimmel also proposed a CCM to calculate the first 
order of static properties [3]. However, so far no study has been undertaken to 
make a comparative analysis of the algebraic structure of the equations and show 
correspondences between these methods. 

In this paper we want to keep on record a comparative study of some of these 
methods based on CC wave function aimed at calculating first order property in 
physically meaningful schemes. Certain correspondences will be shown on com- 
pletely analytical grounds which will be very useful for later computations. We 
will study the nonvariational [4] and the variational method recently suggested 
for first order properties as well as the simple expectation value of the first order 
property operator using a stationary CC state. 

2. Background of the pertinent theories 

Let us first review these methods for first order properties in brief. ~f~ek and 
Fink [2] considered the simple expectation value of a one body operator 6 as, 

<6> = <4,1610>/< 1 (1) 

where 0 is a suitable stationary state. Using a CC form of the wave function ~, 
6 was shown to be a sum of linked diagrams. 

(6)  = ( (bo[e T+ OeTgbo)Linked (2) 

with 

0 = eTtho (3) 

T is the logarithm of wave operator, ~bo is the reference, function Equation (2) 
is a power series in T, and has to be truncated to a suitable degree for actual 
computation. 

We will now write the expressions for first order static property using the two 
other methods to be studied here-nonvariational CCM of Monkhorst [4] and our 
variational CCM [5]. These approaches start from a perturbed Hamiltonian H 
(A) including the perturbation due to the external fields. 

H(A) = H + , I 6  (4) 

Where H is the Hamiltonian of the system and 6 is the corresponding property 
operator defining the interaction of the system with the external fields, A is a 
coupling parameter. The wave function 6 (A) is given by 

r = er(*)~bo (5a) 
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where 

T ( , )  = T +  ;~T( '+ ; J T ?  ~ 

E(A) = E + AE (~) + A2E~ ). 
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(5b) 

(6) 

Operator T is the usual logarithm of the waveoperator for the wavefunction 
corresponding to the field-independent Hamiltonian H. T (1), T (2) etc appear as 
the response to the presence of  the field. E (1) is associated with the first order 
property E (2) may be associated with second order property and so on. Let us 
use subscripts N V  to E (A), E (1~ etc. in (6) obtained by the nonvariational method 
and V to the same quantities obtained by the variational method. 

ENV( A ) = (C~o[e- T(a)H( A )eT(X)]d)o). (7) 

when 

E(1) T ^ My = (thole- {O+[H,  TO)]}er{~)o) (8) 

with the equation determining parameters of  T ~ in the nonvariational method 
given by 

(~*le-~{6 + [H, T(1)]}eT[chO) : 0 (9) 

r(~) is the first order property calculated ~b*'s being the relevant excited states, LNv 
by a nonvariational method. T-parameters are the parameters obtained through 
C/~ek's CC equations for correlation energy. Equations (8) and (9) generate 
linked diagrams. T and T (~) can be written as the sum of  various n-body operators. 

T = •  Tm (10a) 
m 

T (1~ = • T(~ ~ (10b) 
m 

where 

7"1 = Y. (plt~]oOa;a~, ( l l a )  
o G p  

1 
Ta = ~ o~,o ( pqlta]a/3)a; a q ar (11b) 

P,q 

etc., where a,/3 denote occupied spin-orbitals, p, q, are unoccupied spin-orbitals 

T~ 1), T~2 ~) etc. can be written in a similar manner. 

In the variational method, a linked perturbed expectation value functional 

Ev(A) = (CboeT(~)+H(h) eT(*)[~b0)Li~k~d (12) 

E ~  ~ = (OVolN[e~+{6 + T(1)+H + H T(l~}e r]lqb0)L~.ked. (13) 

The relevant equations for T, T (~) may be obtained by equating for A ~ A ~ terms 
in the following system of equations to zero. 

OE(A) 
= O. (14) 

O T + 
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As in the nonvariational method T, T (~) etc. are obtained hierarchically. In the 
variational method T's are obtained by putting the derivative of h-independent 
term of (12) with respect to T § matrix elements to zero and then equating the 
derivative of E(v 1) with respect to T § matrix elements to zero gives us the T (1) 
matrix elements. 

3. Analysis of the approximate methods 

We note that if we use full expansion with all possible cluster parameters in the 
wavefunction, the quantities obtained by both these methods are identical. 

17(1) / ~7(1) Furthermore, the first order static property obtained by these methods ,_, NV/~ V 
with the full expansion in ~b(h) in Eq. (5a) is identical to the expectation 
value of first order property with respect to an exact stationary CC state. However, 
it will be interesting to study them in various approximation schemes. In this 
context we will study two different kinds of truncation models (a) T -  T2, T (~) - T2 
(b) T - ( T I +  T2), T(1)~(T~I)+T2). In both these schemes we ignore T's and 
T(t)'s which are a higher body than T 2 and T~2 ~). If  we use maximum overlap 
orbitals as suggested by Kiimmel [3] (T1 = 0) we have the model (a). Model (b) 
includes both T1 and T2 generally. We will first show certain pertinent correspon- 
dences between the nonvariational method and the variational method under 
model (a) i.e. the truncation T ~ T2, T (1)- T~ 1) as well as the expectation value 
(2) in T--  T2 approximation. This amounts to a proper choice of orbitals where 
single excitations are negligible. 

Let us study the nonvariational expression. We use Linearised-CPMET (L- 
CPMET) values for T2-parameters (i.e. linearise the equations for T2-matrix 
elements). Substituting these values for T2-matrix elements in Eq. (9), we obtain 
T (1) matrix elements. Diagrammatically the equation means that the 2 particle- 
2hole (2p-2h)block consisting of the linked contractions of 

(O 7~2"[ - u~(1).2 --J~- ~'T(1)-1---2 -- '/.) 2 ~ 2 )  : 0. (15) 

This is a linear equation in T(21) matrix elements. If  we now make a further 
approximation in neglecting the terms due to v 2 ~ 2  contractions, then Eq. 
(15) may be written as, 

A T~2~) + B'(T2) ---- 0. (16) 

Where A is the usual (L-CPMET) matrix of coefficients, T~2 ~) is a column consisting 
of T~21) matrix elements. B' (T2) is a column matrix consisting of various two 
particle-two hole (2p-2h) elements generated by contractions of OTz (with L- 
CPMET T2-matrix elements). It can be shown that under these conditions, E (1) 

obtained via Eq. (8) is equal to the expectation value (as in Eq. 2) truncated to 
quadratic terms in T2. From Eq. (16) one can write 

T~ 1)= -A-aB'(T2). (17) 

The nonvariational expression for first-order property E (1) is given by the sum 
of the contribution of the closed linked diagrams generated by contraction of v 
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and T~ ~) operators and the value corresponding to the stationary function ~b0 
(reference value). An element of T(21~ i.e. [T~l)]i is given by 

[ T(21)], = ~ (A-1)ij(B')j (18) 
J 

where the index " j "  runs over all the 2p-2h distinct elements. L-CPMET T~ s 
satisfy the equation 

AT2+ B=O (19) 

where B is a column matrix consisting of v-matrix elements. 

T2 = -A- lB .  (20) 

Closed diagrams consisting of v and T(21) operators may be written as BTT(21) 
where B r is a row. Hence E ~ apart from its reference value, is given by 

-Y. [BT], (A-1),j[B'(T)]j 

The indices i and j ruff over all the 2p-2h matrix elements. 

If we start from the expectation value type expression as in Eq. (2) which is 
truncated to quadratic terms, ((3), apart from its reference value, is given by all 

+ ^ 
the closed diagrams consisting of T2, O and T2 operators. Since O is a one-body 
operator, no closed diagram consisting of contractions T~- (3, (3 T2 are possible. 

+ ^  
The diagrams consist of closed contractions of T2 O and T2 operators. This 2p-2h 
block is identical to the B' (T2) block. Hence the closed diagrams involving T~, 
(3 and T2 operators may be written as, 

E (T2),[B+ ' (T)], 
i 

where i again runs over all the partinent 2p-2h indices. 

T~- is a row consisting of T~- matrix elements. Using Eq. (20) and the hermiticity 
of A one can write, 

T + = - B r ( A  -~) (21) 

such that 

(T~-), : - ~  [Br]j[(A-~)]j,. (22) 
J 

Hence, the closed diagrams involving T~-, (3 and T2 operators may be written as, 

- E  E [Br]j(A-~)j,[B'(T2)], 
i j 

with i and j running over 2p-2h distinct elements. 

Hence the nonvariational expression for calculating static property under the 

~ r  ) coupled with a further neglect of the terms due to contraction of 
2 in Eq. (15) leads to a value identical to that generated by the expectation 

value expression (Eq. 2) truncated to a total of quadratic powers of T in T-- T2 
approximations. 
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Now we show that the same value of E (1~ as in the nonvariational method under 
the conditions discussed above is obtained if we follow a variational prescription 
for calculating T(21), 7"2 matrix elements by taking a total of quadratic power in 
T2, T(21) in E (h). Indeed, this is very similar to our earlier observation in the 
context of correlation energy that the variational method with the inclusion of a 
total of quadratic power in the energy functional furnishes the L-CPMET energy 
[7]. With the quadratic terms included, the calculation of T2 gives the L-CPMET 
T2's as has been discussed in our work in [7]. Let us now analyse the expression 
for E(~ 1~ and the structure of the equations for calculating T2, T(2 ~) matrix elements. 
E(~ 1) contains upto quadratic in 7"2, T(2 a~ the following terms 

= (6016160)+ (6ol T216o)L 

+ (6ol Y(21)+fT2160)L + (60[ T(21)+vT216O)L 
+ (6o[ T(21)+ v[60)L + (6o[ T~vT(21)I6O)L 

+ (6o1T~-fT(21)I 6o)L + (6o[/9T(1 )160)L- (23) 

Subscript " L "  denotes linked diagrams. All operator products in (23) are in 
normal order. The above terms are the only contributing terms. T2- matrix elements 
are obtained by equating the h-independent term in Eq. (14) to zero. The equation 
obtained will be identical to the ones obtained by making the energy functional 
((6oler~Her216o)) (truncated to quadratic power) stationary with respect to T + 
matrix elements. As has been discussed in [7], we get L-CPMET T~'s. The equations 
for T(21) matrix elements are obtained by equating the derivative of terms linear 
in h in E(A) i.e. E (1) in Eq. (23) with respect to the matrix elements of T~ to 
zero. Diagrammatically, E ~ consists of closed diagrams only. When the 
differentiation with respect to T~ is done, 2p-2h block is generated consisting of 
the linked contractions. The variational equation may be diagramatically inter- 
preted as 2p-2h block generated from the contractions 

r---.-~(1) j_ ~-q,(l)~ = 0 (24) ( 0  T2+~ ,2  - J  ,2  i 

Eq. (24) defining the T(21) matrix elements is identical to Eq. (16). Consequently, 
the closed contractions involving 

tr~n ~ ( 1 )  _[_ ~ ( 1 )  T~ OT2+T~ f T2 T;  /) T2 =0. (25) 

Similarly, the I':-CPMET T~s satisfy the condition that the closed contractions 
involving 

~ +  T 2 ~ - - - ~ 2  + ~ 2 = 0 .  (26) 

Because of Eqs. (23), (24), (25) and (26) E(~ 1), apart from the reference value, is 
given by the closed diagrams involving the v, T(2 ~) operators. Hence, this completes 
the derivation of our assertion. 

Using one-hole one-particle orbitals (2-state model) for a 2-electron system let 
us write down the algebraic expressions for the first order property in the above 
methods using model (a). If  we have a as the hole orbital (spatial), p as the 
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particle orbital, then from Eq. (16) we have 

(6. .  - 6,,p)(ppl t21 o,o ) 
(pplt~lo.~) = [f~p -S<<. + (p<~lvlom)- 2( po, ivlp,~) +�89 + �89 ]. 

(27) 

where Goldstone matrix element convention has been used. 

The same value of  (pplt;laa) is obtained by use of the variational method under 
the model (a) with E~ 1) truncated to a total of quadratic power in T2, T(2 ~) (i.e. 
the Eq. (24)). If (pplt21o~a) is the linearised CPMET value, E u) in both these 
variational and non-variational methods as well as the expectation value (6) 
truncated to quadratic power in T -  T2 approximation are identical and equal to 

(c~a ]vipp)(6o~ - 6pp)(pp] t2lao~) 

[s  - f~= + (pc~lvlc~p)- 2(pc~lv]pcd + �89 + ~(pp[vlpp) ]" 

Now, let us improve the model and include 7"1 and T~ ~) as well. Inclusion of 
singly excited configurations is important for the calculation of first order property 
when we use the Hartree-Fock (HF) orbitals. We will study some interesting 
analytical correspondence between these methods in this improved i.e. the model 
(b). In such a model, E~ a) is given by, 

+ A 
E(1)  = ( @ole( r,  + T2) {O+(T~I)+ T~I))+H 

+ H( T]I)+ T(1))}e(Tt+Tz)]d)O)Linked. (28) 

Let us retain terms up to a total of quadratic power of 7"1, T2, T~ 1), T(21) except 
for (4)oivT~')Tlldoo) and its conjugate (T1, T~ a) being small, this is not unreason- 
able). In this approximation we can show that the variational method yields the 
same first order property as the expectation value (~bo] e T+6eTi~bo) in T--  (T1 + T2) 
approximation if we use the values of T~, T2 matrix elements obtained by a 
linearised CCM with Singles and Doubles (LCCSD) calculation. Neglecting 
(~bolvT~l)T1]q~o) and its conjugate terms, the variational equations for T~ 1), T~ a) 
may be shown to be the following set: 1 particle-1 hole (lp-1 h) block consisting 
of the following contractions 

( 6 + i 5  J'l JVb T2' +y'~-~(ut, + v~~(2~)+ v~-~/'~')) = 0 (29) 

2p-2h block consisting of the contractions 

(6 T1 (Disconnected) O-T2-]-~:lq]l)-~ ~r-"~(21)"~- ~r--~ 1)) = 0. (30) 

It may be noted that the variational equation contains a disconnected 2p-2h term, 
6T1 coming from the closed diagram in E (1) involving T +, 6 ,  7"1 operators. The 
rest of the diagrams are all connected. 

The equations for 7"1, 7"2 (L-CCSD) are given in diagrammatic language by lp-lh 
block generated from the contractions 

( f - ~  + v~-~ + v~-~2) = 0 (31) 
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2p-2h block generated from the contractions 

(v + v'---~2 +J--~2 + v'--~,) = 0. (32) 

Because of Eqs. (29)-(30), the sum of the closed diagrams involving the following 
contractions is equal to zero i.e. 

r7 6',T,. r; f + 
§ T~r'~-'~V ~1)-] - T~ O~-T1 § T~- O' T2-[- T~------~-" ( ' ) v  T2 

+ T ~ 2 +  T2~(~ v+ ~ 2 +  T 2 ~ - T 2  

~ , = 0 .  (33) 

One can then show that under the approximations E{v 1) is, apart from its HF 
value, given by the closed contractions of 15 and T~ operators as well as v and 
r~ 1) operators. 

E(~ '} = Our  + O~--T, + v'-~ (2 '). (34) 

Eq. (29-32) can be compactly written as, 

XT (~) +y ' (T )  = 0 (35a) 

XT+y = 0, (35b) 

where, as before, T and T (~) matrix elements are arranged in columns T and 
T (~) respectively. X is the matrix of coefficients which is identical for T and T (~) 
determining equations under the approximations we have discussed. 

[y'(T) ]i = (lP- 1 h) block consisting of contractions of (6  + O--T1 + Or~2) 
(36a) 

i = l , M  

[y'( T ) ] i  = 2p-2h block generated from the contractions of (OT2) 
and disconnected O T1 term. 

i = ( M +  1), N. (36b) 

The first M indices refer to distinct T1 or T~ 1) matrix elements. The rest of the 
( N - M )  indices refer to distinct T2 or T(21) matrix elements. Similarly, 

y~=0 i=  1 , . . . ,  M (37a) 

Yi= vi i = M + l , . . . ,  N (37b) 

vl = Collection of distinct 2p-2h v-matrix elements. Closed contractions of v and 
T(21) operators again may be written as ~ M + I  (Yr)iTI1) 

N N 
v ~ 1 ) = _  E Y, (Yr)i(X-1)u[Y(T)]~ (38a) 

i=1 j=l  

(Because [yr]i  = 0, i = 1 , . . . ,  M). (38b) 
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Let us start f rom the expectation value type expression in T ~ (T1 + 7"2) approxi- 
mation with L-CSSD T1, T2 values. 

A A ^ _1 ^ 

(6)  = OI-IF']'- [(1~/~0[ T2-O T2l~o ) -1- (~/~ol T~O T 1 [~0) ''[- < ol T1 O1, o> 
+ < T~-6 T116o) + ( 4,0[ T~OT21 ,~o)] + (~,o16 T116o). (3 9) 

The terms in the square bracket may be analysed as follows. (&olT~-rT2[~bo)+ 
(~bo[ T~-6 Tll~b0) may be viewed as closed diagram resulting from the contraction 
of T~ operator  with [y '  (T)]i  with i being 2p-2h indices. The rest of  the terms 
in the square bracket may be similarly seen as the closed contraction of T + 
operator with [y ' (T)] i  with i being lp-lh indices. Hence, terms in the square 
bracket may be written as, 

N 

E T~[y'(T)], 
i = 1  

We see that, 

N N N 

E T+ [ y ' ( T ) ] , =  - Y. • [yT]j(X-1)j,[y'(T)]i. (40) 
i ~ l  i = 1  j = l  

Comparing Eqs. (40), (39), (38), and (34) we find that if we invoke the model 
( 1 )  . �9 �9 (b) and t r u n c a t e ~  a total of  quadrattc terms tn T, T (1) as well as neglect 

the contraction b T [ "  T1 and tts conjugate term, the variational method yields 
an identical result_to the expectation value quantity in T -  (T~ + T2) approxima- 
tion. However,  unlike in the case of  model (a), no correspondence can be 
established with the nonvariational method. The equations for T (n matrix ele- 
ments in the nonvariational case are entirely different. I f  we write the nonvari- 
ational equations in the form of (35a), (35b), we will find that [y'(T)]~ for 2p-2h 
indices of  i will not contain the disconnected term. Hence no correspondences 
with the nonvariational method are established. 

4. Summary 

We have established some analytic connection between a variational and a 
nonvariational CC method as well as the expectation value in a CC stationary 
state for first order static property. In T -  T2, T (1)-  T(21) model, we have derived 
some approximate  versions of  the theory which will yield identical results. When 
additionally we include TI, T~ 1) in the wavefunction, we see that an approximate 
variational and expectation vaue quantity truncated to a total of  quadratic terms 
in T furnish the same results. However, correspondence with the nonvariational 
method is not transparent and we have also discussed the reason for this. 
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